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ABSTRACT 
 

The advances in wireless communication techniques, mobile cloud computing, automotive and intelligent terminal 

technology are driving the evolution of vehicle ad hoc networks into the Internet of Vehicles (IoV) paradigm. This 

leads to a change in the vehicle routing problem from a calculation based on static data towards real-time traffic 

prediction. In this paper, we first address the taxonomy of cloud-assisted IoV from the viewpoint of the service 

relationship between cloud computing and IoV. Then, we review the traditional traffic prediction approached used 

by both Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) communications. On this basis, we propose a 

mobile crowd sensing technology to support the creation of dynamic route choices for drivers wishing to avoid 

congestion. Experiments were carried out to verify the proposed approaches. Finally, we discuss the outlook of 

reliable traffic prediction. 
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I. INTRODUCTION 

 

The Internet of Things technology is driving the 

evolution of Vehicle ad hoc Networks (VANETs) into 

the Internet of Vehicles (IoV) paradigm. IoV is an 

emerging field that crosses multiple disciplines, such as 

automotive, transportation, information and 

communications technology. The different perception of 

the vehicle in VANETs and the IoV makes these two 

scenarios differ fundamentally in the device, 

communications, networking, and services aspects. A 

vehicle in VANET is mainly considered as a node to 

disseminate messages among other vehicles, thus 

forming an inter-vehicle communication network. 

However, in the IoV paradigm, a VANET forms only a 

portion of the communication network. In addition to 

VANETs, dynamic vehicular mobile communication 

systems include inner-vehicle communication systems, 

such as Vehicle to Sensor (V2S), and communication 

with other entities, such Vehicle to Infrastructure (V2I), 

Vehicle to Human (V2H) and Vehicle to Internet [1,2,3]. 

Recently, cloud computing technology has emerged as a 

new information technology infrastructure for the fast 

developing IT industry. In [2], Liu proposed that, from 

the network perspective, the IoV system is a three-level 

―Client-Connection-Cloud‖ system, which includes the 

client, the connection and the cloud, respectively. Cloud-

Assisted IoV (CAIV) is becoming a hot topic; it refers to 

representing physical system components, such as 

sensor-equipped vehicles and other devices in the cloud 

virtually, accessing (e.g., monitoring, actuating and 

navigating) those physical components through their 

virtual representations, and processing and managing the 

large amount of data collected from physical 

components in a scalable, real-time, on-demand, 

efficient and reliable manner [4,5]. Specifically, the 

integration of cloud computing techniques (e.g., 

virtualization, elastic re-configuration, and multi-

tenancy of resources) with IoV techniques (e.g., vehicle 

social networks, and efficient big data analysis) appears 

to be a promising approach to advancing the state of the 

art, and allows previously unrealizable applications and 

services to be built, deployed, and managed effectively. 

Therefore, we believe that vehicular networking as a 

nascent form of IoV constitutes a very basic scenario of 

IoV. Recently, an increasing number of system 

technologies and system intelligence designs have been 

developed to make transportation cleaner, safer and 

more efficient. The IoV will play an important role in 

the clean traffic environment in the future. For example, 

reliable traffic prediction is very beneficial in saving 

travel time, reducing pollution, and improving traffic 

efficiency. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B1-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B2-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B3-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B2-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B4-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B5-sensors-16-00088


International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 

 

594 

With the convergence of mobile communications and 

intelligent terminal technology, the transportation 

system is provided with a new approach in alleviating 

the traffic congestion through Mobile Crowd Sensing 

(MCS) technology, which is based on the power of 

various mobile devices such as smartphones and/or 

sensor-equipped vehicles [6,7]. In this sensing paradigm, 

participants, such as the drivers, can forward the traffic 

data obtained from mobile devices to the traffic 

monitoring system’s cloud. Then, traffic data analysis is 

carried out to inform drivers or related traffic authorities 

of the traffic situation. 

Using vehicle communication, the roadside unit can 

ascertain a road’s status in real-time, and, along with the 

vehicular status, deliver these traffic data to the cloud, 

which in turn can estimate the average speed and other 

information. Unfortunately, these valuable traffic data is 

not being utilized by traffic departments, so no provision 

has been made for their effective transmission, storage 

and analysis. Currently, existing travel time prediction 

and vehicular dynamic route planning models do not 

analyze traffic data for drivers. 

In this paper, we propose a method for utilizing data 

derived from connected vehicles to improve 

transportation efficiency. We present new algorithms for 

the timely estimation and prediction of travel times, and 

combine the results with accident prediction to support 

dynamic route choices for drivers to avoid congestion. 

In addition, this approach could potentially lead to 

building efficient large scale sensing applications by 

leveraging smartphones and/or sensor-equipped vehicles 

[8]. For example, instead of installing road-side cameras 

and loop detectors, one could collect traffic data and 

detect congestion levels using smartphones carried by 

drivers. Such solutions reduce the cost of deployment of 

specialized sensing infrastructure. 

As previously described, the emerging technologies for 

traffic prediction are becoming a reality. In this paper, 

the goal of our research is to outline the current methods 

for traffic prediction and propose a novel method based 

on MCS technology. Our main features and 

contributions as follows: 

 We discuss state-of-art traffic data collection 

and traffic prediction technologies in detail. 

 We analyze the architecture of CAIV in a traffic 

analysis cloud environment and emphasize how 

to utilize the cloud to realize traffic prediction. 

 We propose a novel algorithm based on MCS 

technology to predict traffic conditions. 

 Also, we provide a qualitative comparison 

among three kinds of approaches, and we 

discuss our analysis and the field’s outlook. 

The paper is organized as follows. The related works on 

CAIV, particularly from the perspective of traffic 

prediction, are presented in the next section. We then 

give the taxonomy of CAIV approaches and review 

traditional traffic prediction models used in both V2I 

and V2V communications. Following that, we propose a 

novel MCS approach to make traffic predictions. 

Subsequently, we carry out experiments to verify the 

proposed approach. Finally, we give some insights for 

reliable traffic prediction. 

II. RELATED WORK 
 

In order to improve traffic conditions, some researchers 

have proposed traffic mitigation techniques. In this 

section, we review the state-of-art technologies on traffic 

data collection and traffic prediction. 

2.1. Traffic Data Collection Technologies 

In the past decade’s approaches, researchers usually 

made some measurements to collect traffic flow 

information. The most common intrusive and non-

intrusive detection technologies are loop detectors and 

road-side cameras, respectively. A loop detector is 

buried underground and detects the pressure exerted by 

vehicles to count the number of vehicles passing over it. 

Traffic cameras not only count the number of vehicles, 

but can also identify plate numbers. These two 

approaches incur enormous infrastructure deployment 

costs, but they have been widely used in transportation 

systems for traffic flow monitoring. Once a slow traffic 

flow or an unexpected standstill is detected, the traffic 

situation regarding the particular road may be published 

dynamically on nearby billboards to inform drivers. 

In recent years, On-Board Equipment (OBE) is being 

used to detect the status of vehicle using vehicular 

sensors. A GPS receiver can obtain the location; the 

speedometer can measure the vehicle’s speed; the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B6-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B7-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B8-sensors-16-00088
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odometer can obtain the distance travelled within an 

interval and various other inner sensors can obtain 

information about the vehicle’s condition. These traffic 

data can be delivered to a data center though a cellular 

network. 

However, VANETs introduced a novel, more timely and 

interactive way of collecting traffic data. A VANET 

uses vehicles and/or smartphones as mobile nodes in a 

mobile ad hoc network to create a mobile network [9]. 

In this manner, Roadside Equipment (RSE) deployed at 

strategic locations can exchange information with 

smartphones carried by the drivers. RSE and proximate 

smartphones are interconnected and share traffic 

information (e.g., traffic congestion levels). Vehicles 

outside the range of any RSE may still be connected to 

the rest of the vehicle and infrastructure network via 

neighboring vehicles. This network can generate 

accurate real-time traffic information in great detail, 

based on which some fundamental traffic problems 

regarding efficiency can be addressed from a brand new 

perspective. 

2.2. Traffic Prediction Technologies 

2.2.1. Travel Time Aggregation for Traffic 

Prediction 

For the travel time aggregation process, communication 

channels are established between dynamic mobile 

systems based on vehicles and RSE units. In [10], 

Lochert et al. tackled the aggregation problem for the 

specific case of travel time data supporting road 

navigation decisions. Essentially, the travel time 

aggregation, including landmark- and hierarchical 

landmark-based aggregation, is achieved through 

compressing all available information on all possible 

paths between two landmarks to a ―virtual‖ link 

connecting them. The basic idea of the aggregation 

scheme is based on landmarks such as junctions and 

intersections. Landmarks are defined on multiple levels 

of hierarchy in the road network. At the highest level, 

these are junctions of the main roads or highways, while 

lower levels include higher level landmarks and an 

increasing number of smaller street intersections. The 

lowest level is a representation of the full road network. 

With the support of V2I communication, vehicles 

passing a road segment make an observation of the 

current travel time between two neighboring landmarks. 

This information is subsequently distributed to nodes 

within their close surroundings. It is then used by 

vehicles to calculate travel times between landmarks of 

the next higher level, thereby summarizing the travel 

times in the area. The details of landmark-based 

aggregation were analyzed in [11]. 

In order to perform hierarchical aggregation, landmarks 

are assigned a level in a hierarchy. Landmarks of a 

higher level are also members of all the lower levels. 

The destination of a trip will not always be a high-level 

landmark position. Nevertheless, the aggregated 

information can of course be used for route planning. In 

order to plan a route, a navigation system ―fills in‖ the 

missing information between the final destination and 

close-by landmarks by using standard travel times 

hardcoded in the map data. This is reasonable, because a 

final decision on the last part of the route is not yet 

required at this stage—it is sufficient if a good choice 

for the immediately upcoming routing decisions can be 

made. As the vehicle approaches its destination, the 

route can be updated and refined as more detailed 

information becomes available. 

2.2.2. Spatio-Temporal Correlations for Traffic 

Prediction 

A vehicle in a VANET not only connects the RSE, but 

also connects to other vehicles. Connected vehicles and 

roadside infrastructure can generate some traffic data, 

such as vehicular spatio-temporal trajectories, which 

allow a brand new perspective on addressing some key 

issues of traffic prediction, including: (a) how to 

accurately aggregate traffic data and predict future 

traffic conditions using the VANET; and (b) how to 

improve efficiency of traffic management by mining 

huge amounts of traffic data. In [12], Min et al.presented 

a new method for real-time road traffic prediction with 

spatio-temporal correlations. The method takes into 

account the spatial characteristics of a road network in a 

way that reflects not only the distance but also the 

average speed of the links. In [13], Li et al. proposed a 

real-time and reliable communication architecture for 

connected vehicles based on traffic responsiveness, a 

field theory model based on connected vehicles, and 

networked vehicle routing algorithms. In this study, a 

new method for traffic prediction was proposed through 

the combination of temporal and spatial traffic flow data 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B9-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B10-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B11-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B12-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B13-sensors-16-00088
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(e.g., volume, density, and speed), which was 

simultaneously based on tensor feature regression. In 

[13], Wan et al. gave some insights from the point of 

view of context-aware, and carried out a simplified 

experiment for traffic prediction. 

Even if the areas of interest are not covered by RSE, we 

can still carry out traffic predictions. The vehicle can 

cache traffic data in its memory and, once it passes by a 

RSE, it will transmit cached traffic information such as 

its origin, destination, and vehicle trajectory data, to the 

RSE. A lot of useful information, such as volume, speed, 

density, acceleration/deceleration rates, and travel times 

of upstream segments, can be processed by appropriate 

data analysis algorithms. This information can then be 

correlated with traffic data obtained from 

upstream/downstream RSE and traditional loop 

detectors. A mathematical relationship can then be 

established using the tensor regression method of [14]. 

The RSE mines the trajectory and loop detector data and 

continuously provides estimates and predictions on the 

state of traffic in areas not covered by RSE. 

2.2.3. MCS Paradigms in Transportation 

Transportation is an obvious application area for MCS. 

Recently, some crowd sensing experiments were carried 

out to determine traffic congestion levels, traffic delays, 

and road condition problems (e.g., potholes). There are 

several notable examples: 

 MIT’s CarTel project [15]. Both mobile devices and 

custom-built on-board telematics devices were used 

to gather information about vehicles’ location and 

speed. The CarTel system can estimate road travel 

times using a combination of historic and real-time 

information. These estimates are used in detection of 

congested road segments and in real-time route 

planning to minimize expected travel times. In this 

case, the energy consumption of the mobile devices 

is reduced by using inaccurate but less power-

demanding positioning. 

 Microsoft Corp.’s Nericell project [16]. This project 

focused on traffic in developing regions, with 

experiments conducted in Bangalore. In particular, 

emphasis was placed on the detection of potholes in 

roads, based on particular patterns of acceleration 

observations, and traffic congestion, where 

microphones were used to detect honking. The 

project introduced the notion of triggered sensing, in 

which an observation from a less energy-consuming 

sensor (e.g., an interesting GSM location) is used to 

activate a more power-hungry but accurate sensor 

(e.g., the GPS). 

 The University of California, Berkeley and Nokia 

Corp.’s Mobile Century and Mobile Millennium 

projects [17]. The velocity of traffic in San 

Francisco was monitored using GPS-enabled mobile 

phones. Privacy was enforced through the use of 

spatial sampling that produced anonymized 

observations when crossing so-called virtual trip 

lines. 

 ParkNet [18]: An application that detects available 

parking spots in cities using smart phones combined 

with ultrasonic sensing devices installed on vehicles. 

 Queen’s University (Canada)’s CrowdITS 

project [19]. An ongoing effort to develop a crowd-

based sensing system that uses both GPS logging 

and voice commands to gather information about 

congestion, and use the information for the real-time 

computation of congestion-free routes. 

These projects have shown the feasibility of using GPS 

equipped mobile devices in sensing traffic situation. 

They indicate that even with a relatively low penetration 

of mobile devices, it is possible to get more detailed 

information and broader coverage of the traffic situation 

than solely with stationary sensors. Moreover, the 

experiments given rise to a variety of approaches for 

noisy GPS data processing and verification. Still, the 

central focus of these experiments has been on private 

vehicles and the route choices of individual users. 

However, the superiority of cloud-assisted MCS for 

transportation has not been studied. In this paper, we 

first review geographical data aggregation, and then 

propose a specific algorithm to realize reliable traffic 

prediction. 

III. CLOUD-ASSISTED INTERNET OF VEHICLES 

As mentioned above, RSE deployed at strategic 

locations can exchange traffic data with vehicles 

[20,21,22]. V2I connectivity is critical to avoid or 

mitigate the effects of road accidents, and to enable the 

efficient management of intelligent transportation 

systems [23]. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B13-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B14-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B15-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B16-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B17-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B18-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B19-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B20-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B21-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B22-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B23-sensors-16-00088
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Recently, a few research projects conducted studies on 

the combination of cloud computing with vehicular 

networks. In [24], researchers proposed architectures of 

vehicular clouds, vehicles using clouds, and hybrid 

clouds. In [25,26], a hierarchical cloud architecture for 

vehicular networks was introduced, and the proposed 

architecture included a vehicular cloud, a roadside 

cloud, and a central cloud. Mobile Cloud Computing 

(MCC) technology, with its features of scalability and 

virtualization, can handle massive computing, storage 

and software services in a flexible manner [27,28]. The 

integration of IoV and MCC can promote the 

development of cost-effective, scalable transportation 

systems. CAIV is a promising approach that highlights 

some emerging applications and services, and it is hoped 

that a number of strategies for improving traffic 

efficiency and road safety and enabling a clean traffic 

environment will be introduced through this approach. 

From the standpoint of the service relationship between 

cloud computing and vehicular networks, the 

architecture of CAIV can be divided into three primary 

architecture types: Vehicles to Clouds (VTC), Vehicles 

as Clouds (VAC), and Vehicles with Clouds (VWC). 

With MCC support, intelligent transportation systems 

can provide more elastic services, and even facilitate 

traffic prediction. In this paper, we analyze the service 

relationship between cloud computing and IoV, and 

mainly focus on how to utilize the traffic cloud to 

achieve traffic prediction. For VTC, vehicles can access 

cloud services from gateways deployed along the 

roadside infrastructure. VAC is composed of a set of 

connected passengers and/or vehicles, initially located in 

the same area as other users. Subsequently, they may opt 

to allocate their computing resources to other users, 

forming datacenters. 

Figure 1 shows the information interaction for VWC 

[29]. The ultimate goal of CAIV is to combine the 

features of VTC and VAC to serve the role of vehicle as 

infrastructure and end users simultaneously. In order to 

provide collaborative computing, the VWC architecture 

includes two clouds that work in tandem, a static and a 

dynamic cloud. The static cloud is a collection of 

stationary machines placed in a datacenter, while the 

dynamic cloud uses vehicles as cloud resources that add 

to the total computing capacity. Through the integration 

of the stationary cloud with the vehicular cloud, VWC 

has a great potential to afford more flexibility and 

services. The vehicular cloud, having broad sensing 

capabilities through vehicular sensor networks, can 

provide particular resources over the Internet to either 

the stationary cloud or the end users. By doing so, real-

time road conditions can be assessed and published with 

the timely seamless information due to the mobility of 

vehicular cloud. The vehicle itself can have a connection 

with neighboring vehicular clouds to use services and 

applications over the Internet. 

 
Figure 1. Information interaction for VWC. 

 

Go to: 

 

IV. MCS FOR TRAFFIC PREDICTION BY VWC 

MCS, as an emerging category of internet-of-things 

applications, leverages the sensors and computing power 

in mobile devices opportunistically to sense 

environmental conditions. In this paradigm, we achieve 

abundant cloud services by using V2V, V2I, V2H and 

V2S interactions to form a VWC architecture. The 

following describes the sensing methods and service 

process. 

 Automatic Sensing and Uploading Approaches: 
According to the Mobile Century and Mobile 

Millennium projects, the results suggest that a 2%–3% 

penetration of smartphones in the driver population 

is enough to provide accurate measurements of 

traffic conditions. Therefore, at the early stage of the 

project implementation, we can make use of 

administrative means to obtain the participation of, 

for example, taxi drivers for the purposes of the 

experiments. Smartphones carried by taxi drivers 

can periodically forward data (e.g., mobileId, 

location, speed, and direction) to the traffic cloud 

through the mobile network. The duration of the 

period should be a tradeoff between energy 

consumption, data traffic and data reliability. 

 Service Process: Figure 2 shows the logic flowchart 

of a cloud-assisted MCS traffic congestion control 

algorithm. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B24-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B25-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B26-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B27-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B28-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/#B29-sensors-16-00088
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f001/
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Figure 2. Flowchart of a cloud-assisted MCS 

traffic congestion control algorithm. 

The drivers or passengers can quickly obtain traffic 

congestion levels by various smart terminals, such as 

smartphones, PDAs, or sensor-equipped vehicles. If a 

service request is derived from the participants, the 

system will automatically enable the incentive 

mechanism 

We further study the algorithm to realize traffic 

prediction with MCS technology. Let us assume the 

network under consideration has N stations, s1, s2, …, sN. 

The stations are usually deployed at intersections or 

junctions; the detailed diagram is shown in Figure 

3. R (si, sj) represents road segment from station si to 

station sj. The distance between si and sj is denoted 

by di,j, which remains constant after the corresponding 

stations have been deployed. The variable qi,j is used to 

express the quality of the road, the value which lies in 

[0, 1]. We set the value as follows: 

qi,j=⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪0, R(si,sj) is a first class highway

; 0.5 R(si,sj) is a second class highway;1, R(si,sj) is a thi

rd class highway; +∞, R(si,sj) can not be used.  

(1) 

 
Figure  3.Traffic prediction based on VWC. 

Therefore, as shown in the figure, the quality values of 

roads R(s1, s2), R(s2, s3) are 0.5 and 0, respectively. The 

variable ri,j is used to express the existence of an event 

that causes congestion. We call such an event an adverse 

event; a collision is typical such event. The value 

of ri,j is assigned as follows: 

ri,j={+∞, an adverse event has taken place;0, otherwise.  

(2) 

The average road speed vi,j is derived in the traditional 

manner, i.e., by dividing the distance di,j from 

station s1 to station s2 by the vehicle travel time. This 

method is simple, but does not consider vehicle parking. 

If the driver goes shopping and the vehicle parks in a 

parking lot between station s1 and station s2, the 

shopping time is accumulated with the travel time, so the 

value of vi,j is inaccurate. 

In Algorithm 1, we can obtain the real-time speed using 

speedometer measurements in a specific period T. If the 

vehicle is located on the road, which can be verified 

using a GPS receiver and map matching software, we 

consider the speed value to be qualified at that moment. 

The average speed vi,j is the expectation of all qualified 

real-time speed values. It is underlined that, when the 

vehicle does not lie on a given road, the corresponding 

real-time speed value must be discarded. In the above-

mentioned situation, speed measurements during 

shopping time should be discarded. 

Subsequently, we construct a weighted directed 

graph G = (V, E, φ) as follows. Let V = (s1, s2, …, sN), 

and E = {(si, sj) |, there exists a direct path 

between s1 and sj}, and φ be a function: E → R
+
 such 

that: 

V. SIMULATION AND EXPERIMENT  

5.1. Simulation 

In this paper, in order to give a quantitative analysis for 

the proposed approaches, we make some assumptions: 

(1) the distance from A to B is assumed to be known 

exactly (see Figure 4); (2) vehicles maintain a steady 

speed; and (3) the delay incurred by unexpected 

accidents is about 80 min. In Figure 4, nodes (e.g., S1) 

express landmarks for travel time aggregation. For the 

tensor regression approach, we could further assume that 

there is an RSE unit every ten kilometers deployed at 

strategic locations to exchange information with OBE 

installed on vehicles passing by. The direction and the 

average speed of each road segment are shown in Figure 

5. We used MATLAB/Simulink as the simulation 

environment. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f004/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f004/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f005/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f005/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732121/figure/sensors-16-00088-f003/
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Figure 4. The distance of route segments from A to B. 

 
Figure 5.The average speed and direction of road 

segments from A to B. 

Table 1 shows the weight of routings 

with α = 0.5,  β = 0.8 and γ = 0. Table 2 shows the 

optimum path selection result for different locations of 

traffic accidents. For example, when a traffic accident 

occurs in the road segment between S1 and SB, vehicles 

cannot use this segment. We then set the distance 

between S1and SB to be infinite, and so the optimum 

path SA ➔ S1 ➔ SB between SA and SB is obtained. 

 
Table 1.MCS weights for routing. 

 
Table 2. Results of optimum path selection for different 

traffic accidents. 

As mentioned, we make use of MCS technology to 

support dynamic route choices for drivers. The distances 

and associated route times of different cases are also 

given in Figure 4. As we can see from Table 2, the 

timing of the traffic accident affects the routing 

choice. Figure 6 and Figure 7 show the validation of 

different vehicle routings in four example cases for 

avoiding traffic congestion. For case 2, without 

prediction, the vehicle will come across a sudden traffic 

accident between S1 and SB, which will result in an 

inevitable delay. 

 
Figure 6. The distance travelled in the different cases. 

 
Figure 7. Time taken in the different cases. 

In this experiment, we made several assumptions to 

implement a quantitative analysis. Since the information 

about traffic accidents can be obtained from the traffic 

cloud, we can carry out dynamic route calculations 

periodically. In our view, the assumptions will not affect 

validation of the algorithm. Generally, the MCS 

approach has better real-time performance compared to 

the VANET method. 

From the simulation results, we can see that the planning 

algorithm based on MCS has some advantages over the 

others: (a) Quicker responsiveness. Taking Case 1 for 

example, the MCS-based planning algorithm can easily 

avoid the accident at S2 ➔ S7, as it covers all the roads’ 

status in real-time, so its responsive speed is quicker 

than others; (b) Wider coverage. The CAIV can obtain 

more information from a larger number of smart phones 

simultaneously, so road status coverage can extend to 

many districts and even many cities. In Case 2, the 

algorithm based on MCS can select the proper route and 

avoid the congestion present in the initial phase of the 

route. Its coverage is wider than the traditional planning 

algorithm and the VANET-based planning algorithm. 

5.2. Experiment 

We conducted an experiment to verify our algorithm in 

real road conditions. As shown in Figure 8, the starting 

point was the South China University of Technology, 

and the end point was Guangdong Software Science 

Park, marked as red. A traffic accident is indicated by 

the purple circle, where traffic flow is slow. Using the 

traditional route planning algorithm, the vehicle cannot 
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avoid traffic congestion, and there are 11 traffic lights on 

the route selected. The distance travelled was 13 km, 

while the travel time was 45 min. Using the new route 

planning based on MCS, (Figure 9) the travel distance is 

18 km, but the travel time is 25 min. On the way, we 

only encountered three traffic lights and avoid the traffic 

accident area. MCS technology can sense the traffic 

status more accurately and more quickly, and is 

therefore superior to the traditional method. 

 
Figure 8. Route planning based on traditional algorithm. 

 
Figure 9. Route planning based on MCS. 

From the experimental results, it is easy to see the 

difference in effectiveness between route planning based 

on the traditional algorithm and that based on MCS. The 

algorithm based on MCS utilizes the real-time vehicular 

velocity and event information as criteria to select the 

optimal route and avoid congestion. The travel time is 

shortened from 45 min to 25 min, although the distance 

is 5 km longer than that of the route chosen by the 

traditional algorithm. This algorithm is appropriate for 

city traffic management, especially during rush hours, 

and can provide effective guidance to drivers. 

VI. DISCUSSION AND OUTLOOK 

In this paper, we study three approaches of dynamic 

route choice support for drivers to avoid congestion. 

In Table 3, we provide a qualitative comparison of all 

the studied approaches of congestion control. 

 
Table 3. A qualitative comparison among the three 

kinds of traffic congestion alleviation approaches. 

We also outline some insights for these traffic prediction 

approaches as follows: 

Travel Time Aggregation for Traffic Prediction: We 

note that the vehicle’s information about the current 

conditions will typically be incomplete. It will virtually 

always deviate from the current traffic situation to some 

extent (e.g., because the situation changes over time). 

The route calculated by the VANET-based system may 

therefore be even worse than the standard route. The 

travel time benefit is thus highly dependent upon the 

dissemination performance: it will be large if up-to-date 

information relevant for the route calculation is available 

to the vehicle. It seems obvious that a larger number of 

RSUs improves the dissemination process performance 

and hence higher travel time savings can be achieved. 

This kind of static sensing is affected by several 

drawbacks, such as insufficient node coverage, high 

installation/maintenance cost, and lack of scalability. 

Tensor Regression Approach for Traffic 

Prediction:Given real-time and accurate traffic 

information, each driver will typically select the best 

route in terms of minimum travel time, distance or other 

criteria. Intuitively, these decisions will collectively 

result in a state of Dynamic User Equilibrium (DUE). 

However, for a distributed system, where drivers make 

their own independent decisions based on the same 

travel time information, this may likely lead to a state 

similar to a Dynamic All-or-Nothing (DAN) assignment, 

since drivers with the same origin and destination will 

probably choose the same routes [32,33]. It is well 

known that the transportation network’s performance is 

optimal when the system is in a state of Dynamic 

System Optimal (DSO). Therefore, a decentralized and 

proactive dynamic vehicle routing algorithm should 

allow drivers to self-organize traffic and shift the system 

state from either DAN or DUE to DSO. 

MCS Technology for Traffic Prediction:Traffic data 

collected by smartphones or sensor-equipped vehicles on 

the road, combined with the support of the traffic cloud 

where data mining takes place, make mobile sensing a 

versatile transportation system that can often replace 

traditional approaches (i.e., static sensing 

infrastructures), and allow the realization of a broad 

range of applications. In order to attract prospective 

users’ attention and participation, we should adopt an 

incentive mechanism by considering the relationship 

between contributions and feedback services. The urban 

transportation system of Guangzhou was selected as an 

example for traffic prediction. We all know that the 
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intelligence and mobility of the drivers can be leveraged 

to collect higher quality or semantically complex data. 

For example, drivers can easily identify traffic 

congestion levels and report them using pictures or text 

messages. According to the importance of area, the 

incentive mechanism should be designed by considering 

the weighting factors of each contribution [34]. 

However, the unavoidable reality is that we should pay 

close attention to privacy issues. For example, 

participants naturally have privacy concerns and 

personal preferences, and users may not want to share 

sensor data that contains or reveals private and sensitive 

information such as their current location. 

VII. CONCLUSIONS 

In recent years, the emerging technologies (e.g., mobile 

cloud computing) together with the improvement of the 

infrastructure have brought new opportunities for traffic 

prediction and congestion alleviation. In this paper, we 

focus on two aspects: the taxonomy of CAIV and 

reliable traffic prediction approaches. The architecture 

of CAIV is divided into three primary architecture types: 

VTC, VAC, and VWC. Then, we briefly review 

traditional traffic prediction realized through both V2I 

and V2V communications. Subsequently, we propose a 

mobile crowd sensing technology to support dynamic 

route choices for drivers to avoid congestion. We also 

carry out experiments to verify the proposed approach. 

Finally, discuss the outlook of reliable traffic prediction. 

We believe that traffic prediction through cloud-assisted 

IoV will attract enormous attention and research efforts 

in the near future. 
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